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Abstract 
In this paper, a q-analogue of the noncentral Whitney numbers of both kinds are define in terms 
of horizontal generating functions. Some properties such as recurrence relations, explicit 
formula, generating functions, orthogonality and inverse relations are established. Matrix 
decomposition of these q-analogues is presented in an explicit and non-recursive form. 
Moreover, a q-analogue of the noncentral Dowling numbers and polynomials are defining and 
establish some of their properties. 
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Introduction 
Stirling numbers was extensively studied by several mathematicians due to its applications in 
deferent field of discipline and its relatively interesting correlation properties with other branches 
of mathematics. The Whitney numbers is an extension of the classical Stir- ling numbers. 
Translated Whitney numbers by Belbachir and Bousbaa (2013), r-Whitney numbers by Cheon 
and Jung (2012) and noncental Whitney numbers by Mangontarum et al. (2014) are few of many 
extensions of the classical Whitney numbers.  
 

On the other hand, Stirling numbers was extended into r-Stirling numbers by Broder 
(1984)) noncentral Stirling numbers by Koutras (1982) and (r; β)-Stirling numbers by Corcino 
(2012). To unify all extensions of Stirling-type and Whitney-type numbers, Hsu and Shiue (1998) 
introduced the unified generalized Stirling numbers in which all former extensions of these 
numbers were just a special case. Though some extensions are equivalent by proper choice of 
assignment of variables but their motivations and methodlogies in defining those numbers are 
different. Hence, more extensions of Stirling-type and Whitney-type numbers are still common 
interest of some mathematics researchers. 
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Recently, Mangontarum et.al (2014) defined a noncentral version of Whitney numbers parallel to 
the work of Koutras (1982) as follows: 
 
 
 
 
 

 
 

 
 
 
In this paper, a q-analogue of the noncentral Whitney numbers of the first and second 

kind in terms of horizontal generating functions are introduced. Some properties such as 
recurrence relations, explicit formula, generating functions, orthogonality and inverse relations 
are established. We give a matrix decomposition of these q-analogue in an explicit and non-
recursive form. Moreover, a q-analogue of the noncentral Dowling numbers and polynomials are 
defined and some fundamental properties are established. 
 
 
Noncentral Whitney Numbers of the First Kind 
For convenience, let [t] = [t]q to denote the q-analogue of a real number t throughout this paper. 
Before we can define analogues of this study, let us first state the usual definition of a q-analogue 
of the falling factorial with increment n as; 
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Taking the coefficients of [t-a] l yields (10). 
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Noncentral Whitney Numbers of the Second Kind 
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Similarly, we can show the converse using similar argument. 
 
Matrix Representation of q-Whitney Numbers 
In the paper of Pan (2012) the matrix representation of the unified generalized Stirling numbers 
was defined and established a matrix decomposition of this numbers in an explicit and non-
recursive form. Parallel to this work, we will establish matrix decompositions for the q-analogue 
of noncentral Whitney numbers. From (7) and (17), we have the matrix representation of the q-
analogue of noncentral Whitney numbers of the first and second kind respectively as 
 

 
 
 
 
 
 
and 
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respectively.  
 
Remark 3.8. By orthogonality relation in (27), we have 
 
 
 
 
where E is an in_nite-dimensional identity matrix. Hence,Mq m;a = InvNq m;a , where InvNq m;a 
is the inverse of Nq m;a and vice versa. 
 
Theorem 3.9. The following matrix decomposition formulas hold: 
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Noncentral q-Dowling Numbers 
Dowling (1973) defined a class of geometric lattices based on finite groups. This is called 
Dowling numbers. Mangontarum et al. (2016) defined the noncentral and translated Dowling 
numbers and established some of its properties. A q-analogue of the noncentral Dowling 
numbers is introduce and obtain some combinatorial properties of it such as exponential 
generating function and Dobinski-Type formula. 
 
Definition 4.1. The noncentral q-Dowling polynomials denoted by Dα[n; x]q, is defined as 
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