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Abstract

In this paper, a g-analogue of the noncentral Whitney numbers of both kinds are define in terms
of horizontal generating functions. Some properties such as recurrence relations, explicit
formula, generating functions, orthogonality and inverse relations are established. Matrix
decomposition of these g-analogues is presented in an explicit and non-recursive form.
Moreover, a g-analogue of the noncentral Dowling numbers and polynomials are defining and
establish some of their properties.
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Introduction

Stitling numbers was extensively studied by several mathematicians due to its applications in
deferent field of discipline and its relatively interesting correlation properties with other branches
of mathematics. The Whitney numbers is an extension of the classical Stir- ling numbers.
Translated Whitney numbers by Belbachir and Bousbaa (2013), r-Whitney numbers by Cheon
and Jung (2012) and noncental Whitney numbers by Mangontarum et al. (2014) are few of many
extensions of the classical Whitney numbers.

On the other hand, Stirling numbers was extended into r-Stirling numbers by Broder
(1984)) noncentral Stirling numbers by Koutras (1982) and (r; §)-Stirling numbers by Corcino
(2012). To unify all extensions of Stirling-type and Whitney-type numbers, Hsu and Shiue (1998)
introduced the unified generalized Stirling numbers in which all former extensions of these
numbers were just a special case. Though some extensions are equivalent by proper choice of
assignment of variables but their motivations and methodlogies in defining those numbers are
different. Hence, more extensions of Stirling-type and Whitney-type numbers are still common
interest of some mathematics researchers.
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Recently, Mangontarum et.al (2014) defined a noncentral version of Whitney numbers parallel to
the work of Koutras (1982) as follows:

(tfm)n =3 maln k)t —a)* and (1)
F:--I.l

it —a)" Z il,u {r. k) (t[m)y (2]
2 ]

where (tjo)s = t{t — a){t — 2a).-- [t — {rn — 1)a) and {tja)s = 1. We eallod 15y, q(n, &) and
Winaln, k) as noncentral Whitney numbers of the first ond second kinds respectively. Further
properties of these numbers were established in [17].

The study of a g-analogues and p,g-analopues of some well-known numbers and their

properties has been the interest of several mathematicians of the 217 ecentury including
Corcino [10, 11, 12], Conrad [7], Carlitz [5], Gould [15] and many others. The following

are g-analogue of some special numbers such as r, 2! and () are given by [z]; = 1_—1
[x]y! = [1]:]12]5---[x — 1]y[x], and ] =Bl respectively.  Another important g-
[r — E];1[k],!
analogue identity is the known g- bmamm! inmersion formula
B i n B n ok ";* n
fa=3 M = g = 3 (—1)" gl ]M fe. (3)
bl Ny ket g
A g-analogue of the product of two numbers @ and b is given by
[ﬂ&] =1_{|]15::|“'-1_q5= l_liqb)m_l_lf
Tol-gq 1-g"  1-g" 1-gq
= [a]a[bly. (4)

Similarly, we can shown that [eB]y = [B]g=]a]y. The following are the type I and type 11
g-analogue of ¢! respectively.

£yl = Zl I and &t} = Zq{i}' |T:;.;-!' {5)

= =0

In this paper, a g-analogue of the noncentral Whitney numbers of the first and second
kind in terms of horizontal generating functions are introduced. Some properties such as
recurrence relations, explicit formula, generating functions, orthogonality and inverse relations
are established. We give a matrix decomposition of these g-analogue in an explicit and non-
recursive form. Moreover, a g-analogue of the noncentral Dowling numbers and polynomials are
defined and some fundamental properties are established.

Noncentral Whitney Numbers of the First Kind

For convenience, let [t] = [t]q to denote the g-analogue of a real number t throughout this paper.
Before we can define analogues of this study, let us first state the usual definition of a g-analogue
of the falling factorial with increment n as;
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(iial), = [t — o] -+ [t — (n — 1)a] = [t - kal, ©)

where ([tla]), = 1. We can easily verified ([t|a]), — (t/n), as g = 1 where (tla), =
(t)(t —a} - (f = (n—1a).

Definition 2.1. A g-analogne fL“l'mIE[n,jLT of iy, o(r, §) is defined via a horizontal generating
function

':[Elm]]n = Eﬁim.-z[n:ﬂq[t_u]j (7)
F=0
where @y, [0,0], = 1 and @, 4[n, 5], =0 for j = n.

Corollary 2.2, The following identitics hold:

> . ily = (la+1jml), and (8)
J=a
> Tmaln. dlg[~1F = ([a — 1}m]), - (9)
=0

Proof. Replacing x by e+ 1 and a — 1in {7) yield {8) and (9] respectively. a

Theorem 2.3. The following triangulor recurrence relation holds:

T a4+ 1, ]y = ¢ T aln, § — 1 + [0 — am] @ q[r, 7], (10}
with @ a[n+1,0], = ([alm]), ..
Proof. Applying (7], we have

n+1

> Tonaln-+ 1,3l = = (tim]) (41t = o] + [a — mn])

= gomn Zﬁm:ﬂ[ﬂ,j]q[t —af'[t — a] + [a — mn) Zﬁm#[ﬂ, ilglt — e

j=0 7=
n ) i ;
= """y W aln lyft — o T+ [a— mn] Y @l 1,0t — alf
j:l:l J.=D
w+l ntl ;
— qﬂ:—r.l'l.ﬂ Zﬁm,a[ﬂsj _ llq'[t — ﬂlk + [,|1 - mﬂ.l Zﬁm,m[ﬂ1 .ﬂ{l[t - ﬂ-]_?
=0 =t
n+1
= (el 1 — Uy + o — nl il ) e~ ab.
ke=lk

Taking the coefficients of [t-a] 'yields (10).
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From (10}, the following relations hold:

W[t + 1,5 4+ 1) = q" 7 il o1, §ly + [a — nm]i, [0, 7 4+ 1 (11}
~ . e+ 1.7+ 1]; —[a— a2, j+1
Bnaln, gl = Cmelt T LI H ol 0Bl F 2 e g (12)
v qﬂ—mﬂ
- - W[ + 1. jly — "™ i a[n, § + 1y
"t [TE = : . 13
Fmal, dle — (13
With these relations, we can establish the following theorem.
Theorem 2.4. The following recursion formulns hold:
Waln+ LEk+ 1], =3 ¢ (Ja—m|m]),_; Fm,alj. b, (14)
j=0
" = (—1¥[e — mnilpqn + Lk + 1+ 7] .
Wy o [12, K] = E qUH]:{z—mﬂJ L and (15)
=
- D (—1pglitemmelg Lkl
Wi a1 Ky = E 2! ]q- (16)

= [& — min]i+!

Proof. Successive application of (11), (12) and (13) vield {14), (15} and {17) respectively. O

Noncentral Whitney Numbers of the Second Kind
Definition 3.1. A g-analogue ﬁ;m,n [n, k]y of ﬁ’:m,.:{ﬂ. k) is defined as follows:

(6= al” = > Wanalm, la([tim]); (17)

Theorem 3.2. The following triangular recurrence relation holds:

ITT’hr:m,-z[“' + 1], = ‘i’mﬁ_l]_ﬂﬁ’?m.n[mj — 1y + [mj - ‘llﬁ?m.ﬂ . jlg- (18)
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Prowf.

r+l
S Wonaln + L jly([tm]); = [t —a]"[t — a] = [(f — mj) + (mj — a)],
J=0

=3 Wanaln, g1([tm]); (g™ [t — mj] + [mj — a])
femedl

=3 g Woaln, Fla(tm])ies + g — a] W aln, K] {[Em])s

J=0 =i
n+l rt+l

=3 g W aln, § — Uslltlme + > [mi — a]Wonaln, fl([tm] e
J=0 =0
n+l

= Z (qmu_u_ﬂwm.a [ﬂ': ]' - 1]-',' + [m';‘ - E‘]ﬁfm.n[ﬂ~jlq] {[Elm]}k-
J=a

Taking the coefficients of ([f|m]); of both sides gives {18).
The following relatiens can be deduced from (11}, [12) and {13} using (18):

Wopaln + 1.5 + 1], = g W, n, ], + [mii + 1) — a]Waafnd+ 1) (19)
ﬁ'-':m_u[n + 1.7+ 1].;- - [m[_'i' + 1] - E]Wm,nln':j =+ 1].7 an

Winaln, il; = g d [20)
— } ﬁ:-n [J'I: + 1_‘i|| - I]T”U":"“ﬁ;m u.[ﬂ'-j + 1]
Wialn, il = —= Pt : 1, 21
Uzing the ahove relations, we can establish following theorom.
Theorem 3.3. The following recurrence relotions hold:
Woaln + Lk +10, = g™y [mk+ 1) — o] W o4, K, (22)
=k
n—i: i e =
_ (=1 ([mlk+1)—a|—m]) Wyan+ 1 k+1+7];
Weoalr k], = 1 d 23
alr: Kl _qu: qu'+IJimk—a]+[’§']|m an (23)
. B gdtmik— L) - (hm -
I-'. l}jq}{ d 1'I'Irm.u[ﬂ' + 1.k _?]q-
Woaln, &, = . [24)
> (k= el

Progf. Successive application of (19), (200 and (21) yield {22}, (23] and [24) respectively. C
Theorem 3.4. The following explicif formula holds:

T ke LS pykeig(ts) [F j— a]" :
Wl = g V0 JHEEE (29
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Froaf. Replacing ¢ by mk in (17) gives

[k — " = 3~ Wonan, flo{[mklo])

_ g [”:] ) ﬁ"m.u[ﬂ-[';l]f{[ml:l:rﬂ-llj
J qm

Using the g-binomial inversion formula {3), we obtain

[mij — a]™.
-

Wonat, Kla([mim])e Z‘“:{_l}k-qu(*;f:l {ff
J

A

Applying {4) and simplifying above give us (25). ad

Theorem 3.5. The following expornentiol gEﬂElﬂt‘iﬂg function Rolds:

Zﬁrm.n[ﬂﬂ]q[[ ]]| = [l] |[m.] Z (—1)g™ =) |:.'.T] qu' ([mi —a][z]). (26)

Proof. Using the explicit formula m (25) gives

e y 2" _ —1y-igm('7’) m'—ﬂ“[z]n
S Wil Al Z[I] '[ml Z[ 1) H mi =t

Te=i J=0
_qvi— m[‘ -"J [ﬂtj - Ii']E[':é:]ﬂ
I[m.| ;:[ ’ [ Lm "Z_;_[nu :
Applying (5) gives (26).

Theorem 3.6. Let k,m, n, p = 0 integers and any real numbera. Then the following o Ihﬂg
onality relation holds:

n _,-\_ - fl . — D.‘ T n
Z Wona[11, k] a [, ply = Z Wi [1, K] g Wona [k, plg = { 1 'i':II: i i no B (27)
k= b= ’

where by, is a Kronecker delia.
Proof. Using (7} and {17) gives

[t —a]" = Z m-z[n k], Zﬁm:ﬂ[k1 plylt — al”

= Z {Z Wona(1t, klqim.alk, p]q} [t — a]”.

p=0 A k=p
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Comparing the coefficients of [{ — a]® gives

S ose= { UTE g,

h=p

Similarly, we can easily prove that

3 Gl k) Wonalk.p) = . 0

h=p

Theorem 3.7. Let kbon,m = 0 integers and any real numbers a. Then the following inverse
relution holds:

.||I.:r|. = Z ﬁm,n.[ﬂ1 -A:]q.ﬁ'k i = Z FT}U‘L:E[R‘: '[llq'fk {28]
ke=lb k=0

Proof. If the condition

fﬂ - fﬁr.l'l.:ﬂ[n: kiqﬂk
k=0

is true, then

] I
I'Vm:nz[n: .ii'.'-:,Tfk = Z H"’l:m,n[ﬂw 'r‘-']q Z ﬁ?ﬂ:ﬂ[ﬂ: p]q.'?p-
k=0

p=l

Z {Z Wm:a{ﬂs K]yt [n. pl 'I} Hp-

m=0 \ k=p

By (27, we have

n

-'-'q.[r_’-;ﬂ:ﬂ[ﬂ, .EC],‘-._IIFJ; = Z 'EP“'-GF = er.'?n
=i} =0
= fn.

Similarly, we can show the converse using similar argument.

Matrix Representation of q-Whitney Numbers

In the paper of Pan (2012) the matrix representation of the unified generalized Stirling numbers
was defined and established a matrix decomposition of this numbers in an explicit and non-
recursive form. Parallel to this work, we will establish matrix decompositions for the g-analogue
of noncentral Whitney numbers. From (7) and (17), we have the matrix representation of the g-
analogue of noncentral Whitney numbers of the first and second kind respectively as

Vinlt] = M, Valt — af 129)

and
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Volt — a] = NVl (30)

where
Valt] = (L, [1], ([la)a: (el s, - <, ([t ), - )T

For convenience, we write (29) and (30) explicitly as

1 T a0, 0] 0 0 0 1
[¢] Wm,all, Oy imall 1lg 0 0 | (e —al0]h
(e | = | Gmel2, 0 Fma2.2le Gmel22ly 0 o] | (t—afo])2
“ilm]}ﬁ "-r-'rrz.nz[31 u]q wm:a.[ﬂs llq '"-'m,ra[31 Z]Q wm:.u.[ﬂ, 3|.-|- e l::[t — a||:l]}3
and
1 Efrn,u:[u, D]q 0 0 0 0 1
([t — ala])y Wina[L,0ly W alL, 1], 0 0 0 [
([t —altle | = | Waa[20, Wanal2lly Winal2,2], 0 0 ([¢]m] )2
([t — al0])a Won el 0y Wnaldlly Winal3.2ly Wimal3,3, 0 ([tlm])a
respectively.
Remark 3.8. By orthogonality relation in (27), we have
MEI‘L:EI: ’ "Iqlurli,n. = "III"I:]"L:E: ’ M;,u = E!l (31}

where E is an in_nite-dimensional identity matrix. Hence,Mq mj;a = Inv™ m;a , where Inv™ m;a
is the inverse of N¥ m;a and vice versa.

Theorem 3.9. The following matrix decomposition formulas hold:

"ME'I.:E = ?ﬂ,l} ’ Mg,n. and [32}
Naa =Niq Moo (33)

Proaf. By (29), Viu[z] = M2, Vy[z — a|. Note that when the increment m = 0 and a # 0,
we have Vy[z] = M{, Vo[r — a]. On the otherhand when m # 0 and @ = 0, we have
Ven[] = .Mfﬂlu'lfu[x]. Since W, [x] = M'?m#'lfu[a: —a] and V,[z] = M'?mﬂlf’u[x], applying
transitive property yield Vi, [x] = M2 Volr — o] = MY MG Vo [z — a]. It follows that
ME Volr — a] — M7 o Mi Vo[ — a] = 0 where 0 denotes an infinite dimensional zero
matrix. Hence, (M3, , — M}, oMi . )Vo[z — a] = 0. Since x is an arbitrary real or complex
number and Vo[z —al is a nonzero vector, it vields (32). It is easy to show (33) using similar
method and it 1s left as an exercise. |
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Example 3.10. Consider a 3 x 3 of A49 Na a3 Nj, and N7 . Then we have

gt < 0y Y im0
1 L] 0 1 ] n 0 1]
M -M",,:i/u 1 \I ( u ‘1 {/ - \i=
i o, l\ﬂ [-m] g m} l\[u]E U[E]q q.‘zn} l\[ﬂ _ m][u] §%™[e] + g%n —m] g2 rn}
Also that
U L] 1 0 0 0
'Ur{?a NT ([_a| i 0 \‘ |( \l {[_al g 0 \l -

"o k[_“] 2[—"-1]'?_I1 _h} lkn |m| ‘i'm} l\[— P [-alg™® +[m—alg™® q'“‘z“‘}

We can easily verify our example above by assigning an specific value for m and a. Clearly,

100
M N =N My =0 10
' 001

Noncentral g-Dowling Numbers

Dowling (1973) defined a class of geometric lattices based on finite groups. This is called
Dowling numbers. Mangontarum et al. (2016) defined the noncentral and translated Dowling
numbers and established some of its properties. A g-analogue of the noncentral Dowling
numbers is introduce and obtain some combinatorial properties of it such as exponential
generating function and Dobinski-Type formula.

Definition 4.1. The noncentral g-Dowling polynomials denoted by Da[n; x]q, is defined as

ﬁm,u [n; .‘E]q s Z ﬁ'.mﬂ[m k]q:::'l". (34)
k=0
When x = 1 we get
Dualnly =3 Wona[n, K]y (35)
k=0

and is called translated g-Dowling numbers.

Theorem 4.2. The polynomials ﬁmm [n: x|, satisfy the following exponential generating func-
tions

Dimalra], = &g (_z,f[m])z E"’([”‘Eﬂ—][] (x/[m])’ (36)
and

Dl = i (/) 3 1= 3y @)

=
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Proof.

ZD [ﬂ. .1'],?[ ].;- Z( mj[ﬂ L]q ) If:j]::
n (Z Vel g ?E]T:)

_n 1 : —Jm(z)k j — a] [z]) ="

" L Y A o AR
. [—1)3-;“{2:' |:E ] eq([mik — j) — 4] [-I]j.x:k

Sy k=3 m

= / (K] e ! [1ma]

(—=1)ig™Ele, ([m(k — §) — a] [2]) =*
[k — 3! [d] g fm]*

|: lqum{ejeq [m‘i — r.I] [;] I=+J'

e 1D
I
=

Me 1
i

Bl
(gl ey (fmi —d][2]) &
- FZD [mflilem! o [demlmly

Simplifying above gives (36). Setting = = 1 vields (37). O

Hemark 4.3. When o = 1, we recover the the g-Bell Polynomials. That 1s
Di[n;z), = Bulz], ZS n, k)x (38)

Setting © = 1, we get B,[1], = B,[n].

Theorem 4.4. The polynomials ﬁmﬁ[n;m]q satisfy the following explicit formula

Dl zly = &g (—=/[m]) [”’*'[i]:mj‘]“ (e/[ml,)" (20)

When o =1, we have

Bl = égm (1) 32 /ey (10)
i=0 g

and is called explicit formule for roncentral g-Dowling numbers.
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Proof.

s ol F=d I . ok
EM FZQ(—I]A igml*7) LLN [mj — ]t

@[] i) - g

-7

> (Wl

- - ':—ljqum[m(.f; — j) — aJra*
gu g e — Flgm! []gm rm]*

_ =, = I:—l]iqm(é}[mi — a| "zt
jgﬂ ; [i]q"‘ ![j]ﬁ’" ![m];ﬂ

= (—x) m(i) &= mi — a|*z’
=Z( Vg [ |

= [mPlle! 2 [igel[m]

Simplifying above gives (39). Also that setting @ = 1 yields (40).
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